Excitatory muscarinic modulation strengthens virtual nicotinic synapses on sympathetic neurons and thereby enhances synaptic gain.
نویسندگان
چکیده
Acetylcholine excites many neuronal types by binding to postsynaptic m1-muscarinic receptors that signal to ion channels through the G(q/11) protein. To investigate the functional significance of this metabotropic pathway in sympathetic ganglia, we studied how muscarinic excitation modulated the integration of virtual nicotinic excitatory postsynaptic potentials (EPSPs) created in dissociated bullfrog B-type sympathetic neurons with the dynamic-clamp technique. Muscarine (1 muM) strengthened the impact of virtual synapses by reducing the artificial nicotinic conductance required to reach the postsynaptic firing threshold from 20.9 +/- 5.4 to 13.1 +/- 3.1 nS. Consequently, postganglionic action potential output increased by 4-215% when driven by different patterns of virtual presynaptic activity that were chosen to reflect the range of physiological firing rates and convergence levels seen in amphibian and mammalian sympathetic ganglia. In addition to inhibiting the M-type K(+) conductance, muscarine activated a leak conductance in three of 37 cells. When this leak conductance was reproduced with the dynamic clamp, it also acted to strengthen virtual nicotinic synapses and enhance postganglionic spike output. Combining pharmacological M-conductance suppression with virtual leak activation, at resting potentials between -50 and -55 mV, produced synergistic strengthening of nicotinic synapses and an increase in the integrated postganglionic spike output. Together, these results reveal how muscarinic activation of a branched metabotropic pathway can enhance integration of fast EPSPs by modulating their effective strength. The results also support the hypothesis that muscarinic synapses permit faster and more accurate feedback control of autonomic behaviors by generating gain through synaptic amplification in sympathetic ganglia.
منابع مشابه
Estimating use-dependent synaptic gain in autonomic ganglia by computational simulation and dynamic-clamp analysis.
Biological gain mechanisms regulate the sensitivity and dynamics of signaling pathways at the systemic, cellular, and molecular levels. In the sympathetic nervous system, gain in sensory-motor feedback loops is essential for homeostatic regulation of blood pressure and body temperature. This study shows how synaptic convergence and plasticity can interact to generate synaptic gain in autonomic ...
متن کاملA model for pleiotropic muscarinic potentiation of fast synaptic transmission.
The predominant form of muscarinic excitation in the forebrain and in sympathetic ganglia arises from m1 receptors coupled to the G(q/11) signal transduction pathway. Functional components of this system have been most completely mapped in frog sympathetic B neurons. Presynaptic stimulation of the B neuron produces a dual-component muscarinic excitatory postsynaptic potential (EPSP) mediated by...
متن کاملSecondary nicotinic synapses on sympathetic B neurons and their putative role in ganglionic amplification of activity.
The strength and number of nicotinic synapses that converge on secretomotor B neurons were assessed in the bullfrog by recording intracellularly from isolated preparations of paravertebral sympathetic ganglia 9 and 10. One input to every B neuron invariably produced a suprathreshold EPSP and was defined as the primary nicotinic synapse. In addition, 93% of the cells received one to four subthre...
متن کاملCholinergic modulation of excitatory synaptic transmission in the CA3 area of the hippocampus.
Cholinergic innervation of the hippocampus has been implicated in memory formation and retrieval. Here we study cholinergic modulation of excitatory transmission in the CA3 area of the rat hippocampus. We used a combination of optical measurements of presynaptic calcium and electrophysiological measurements of synaptic currents to study associational-commissural (A/C) and mossy fiber (MF) synap...
متن کاملWeak and Straddling Secondary Nicotinic Synapses Can Drive Firing in Rat Sympathetic Neurons and Thereby Contribute to Ganglionic Amplification
Interactions between nicotinic excitatory postsynaptic potentials (EPSPs) critically determine whether paravertebral sympathetic ganglia behave as simple synaptic relays or as integrative centers that amplify preganglionic activity. Synaptic connectivity in this system is characterized by an n + 1 pattern of convergence, where each ganglion cell receives one very strong primary input and a vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 6 شماره
صفحات -
تاریخ انتشار 2006